SUICIDE INTENT SCALE
(For Attempters)

Instructions: Interview the patient about his/her most recent suicide attempt to enable a reliable coding of the objective circumstances of the attempt, and the patient’s perceptions of the attempt. The total score is computed by summing items 1-15. If an item is "Not applicable" code it “-8.” Do not include "-8’s" when calculating the total score.

Total Score:

I. Objective Circumstances Related to Suicide Attempt

1. Isolation
 0. Somebody present
 1. Somebody nearby, or in visual or vocal contact
 2. No one nearby or in visual or vocal contact

2. Timing
 0. Intervention is probable
 1. Intervention is not likely
 2. Intervention in highly unlikely

3. Precautions against Discovery/Intervention
 0. No precautions
 1. Passive precautions (avoiding others but doing nothing to prevent intervention; alone in room with unlocked door)
 2. Active precautions (locked door)

4. Acting to Get Help During/After Attempt
 0. Notified potential helper regarding attempt
 1. Contacted but did not specifically notify potential helper regarding attempt
 2. Did not contact or notify potential helper

5. Final Acts in Anticipation of Death (e.g., will, gifts, insurance)
 0. None
 1. Thought about or made come arrangements
 2. Made definite plans or completed arrangements

6. Active Preparation for Attempt
 0. None
 1. Minimal to moderate
 2. Extensive

7. Suicide Note
 0. Absence of note
 1. Note written, but torn up; note thought about
 2. Presence of note

8. Overt Communication of Intent Before the Attempt
 0. None
 1. Equivocal communication
 2. Unequivocal communication

Copyright © 1978 by Aaron T. Beck, M.D.
II. Self Report

9. Alleged Purpose of Attempt
 0. To manipulate environment, get attention, revenge
 1. Components of "0" and "2"
 2. To escape, surcease, solve problems

10. Expectations of Fatality
 0. Thought that death was unlikely
 1. Thought that death was possible but not probable
 2. Thought that death was probable or certain

11. Conception of Method's Lethality
 0. Did less to self than he thought would be lethal
 1. Wasn't sure if what he did would be lethal
 2. Equaled or exceeded what he thought would be lethal

12. Seriousness of Attempt
 0. Did not seriously attempt to end life
 1. Uncertain about seriousness to end life
 2. Seriously attempted to end life

13. Attitude Toward Living/Dying
 0. Did not want to die
 1. Components of "0" and "2"
 2. Wanted to die

14. Conception of Medical Rescuability
 0. Thought that death would be unlikely if he received medical attention
 1. Was uncertain whether death could be averted by medical attention
 2. Was certain of death even if he received medical attention

15. Degree of Premeditation
 0. None; Impulsive
 1. Suicide contemplated for three hours or less prior to attempt
 2. Suicide contemplated for more than three hours prior to attempt

III. Other Aspects (Not Included in Total Score)

16. Reaction to Attempt
 0. Sorry about attempt; feels foolish, ashamed (circle which one)
 1. Accepts both attempt and its failure
 2. Regrets failure of attempt

17. Visualization of Death
 0. Life-after-death, reunion with decedents
 1. Never ending sleep, darkness, end-of-things
 2. No conceptions of, or thoughts about death
18. Number of Previous Attempts
 0. None
 1. One or two
 2. Three or more

19. Relationship between Alcohol Intake and Attempt
 0. Some alcohol intake prior to but not related to attempt, reportedly not enough to impair judgment, reality testing
 1. Enough alcohol intake to impair judgment, reality testing and diminish responsibility/impulse control
 2. Intentional intake of alcohol in order to facilitate implementation of suicide attempt

20. Relationship between Drug Intake and Attempt (narcotics, hallucinogens, etc. drug is not the method used to suicide)
 0. Some drug intake prior to but not related to attempt, reportedly not enough to impair judgment, reality testing
 1. Enough drug intake to impair judgment, identity testing and diminish responsibility/impulse control
 2. Intentional drug intake in order to facilitate implementation of suicide attempt
Factor Composition of the Suicide Intent Scale

Article in Suicide and Life-Threatening Behavior · February 1993

CITATIONS
59

READS
154

6 authors, including:

John A Sweeney
University of Cincinnati
532 PUBLICATIONS 22,303 CITATIONS

Gretchen Haas
University of Pittsburgh
141 PUBLICATIONS 6,940 CITATIONS

Brian Junker
Carnegie Mellon University
73 PUBLICATIONS 2,494 CITATIONS

J. John Mann
Columbia University
976 PUBLICATIONS 49,336 CITATIONS

All content following this page was uploaded by John A Sweeney on 20 February 2015.

The user has requested enhancement of the downloaded file.
Factor Composition of the Suicide Intent Scale

Tammy A. Mieczkowski, MA, John A. Sweeney, PhD, Gretchen L. Haas, PhD, Brian W. Junker, PhD, Richard P. Brown, MD, and J. John Mann, MD

An exploratory analysis of the Suicide Intent Scale was performed on a sample of 98 psychiatric inpatients who had made suicide attempts. The factor analysis was performed using a method for polychotomous data, and resulted in a two-factor solution. The Lethal Intent factor contained items pertaining to the subjective level of lethal intent, while the Planning factor contained items largely related to objective planning for the attempt. Preliminary analysis of these factors suggest that the Suicide Intent Scale can be used to evaluate two separate aspects of suicidal behavior.

The evaluation of suicide risk is a complex and difficult clinical challenge. In patients who have previously made suicide attempts, the evaluation of suicide intent and the medical lethality of past suicide attempts are two dimensions that are considered to be important in evaluating risk for future suicide (Beck, Beck, & Kovacs, 1975). Rating instruments have been developed to study these aspects of suicidal behavior. The measurement of medical lethality usually consists of an objective rating of the physical damage caused by the attempt using a rating instrument such as the Lethality Scale (Beck et al., 1975). Assessment of suicide intent is more difficult because of its reliance on self-report and the more subjective nature of the information assessed. A comprehensive assessment of suicide intent involves the analysis of an array of overt behaviors, thoughts, and feelings that may represent specific components of intent. Clinical assessment of suicide intent plays an important role in treatment decisions regarding patients who have recently made an attempt. In order to study the causes and correlates of different aspects of suicidal intent, the multiple dimensions of intent must be distinguished.

The Suicide Intent Scale (SIS), developed by Beck, Schuyler, and Herman (1974), is widely used for the measurement of suicide intent. The scale was developed to measure suicide intent associated with a previous attempt. The SIS is comprised of 15 items selected from a pool of items generated by Beck and his colleagues as a result of their clinical investigations and review of the literature. Each item is rated on an ordinal scale of 0, 1, or 2, with the total score ranging from 0 to 30. The scale consists of two sections. Section 1 contains items dealing with the objective circumstances related to the suicide attempt (items 1 through 8), such as whether others were nearby or could possibly intervene, whether there were acts in preparation for the attempt, and whether there was communication of intent. Section 2 contains items based on the patient’s self-report of their internal concept

Tammy A. Mieczkowski, John A. Sweeney, Gretchen Haas, and J. John Mann are with the University of Pittsburgh, School of Medicine. Richard P. Brown is with the Columbia College of Physicians and Surgeons. Brian Junker is with the Carnegie Mellon University.

Address correspondence to Tammy A. Mieczkowski, Laboratories of Neuropharmacology and Mental Health Clinical Research Center for the Study of Suicidal Behavior, Department of Psychiatry, University of Pittsburgh, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Room E-826, Pittsburgh, PA, 15213.

This study was supported by NIMH grants MH 46745 and MH 16755.

Suicide and Life-Threatening Behavior, Vol. 23(1), Spring 1993
© 1993 The American Association of Suicidology
of intent (items 9 through 15), and includes items that tap expectation of fatal-
ity, seriousness of attempt, and attitude toward dying. The inter-rater reliability of
the scale has been reported to be $r = .95$
on a sample of 45 suicide attempters
(Beck, Schuyler, and Herman, 1974).

The validity of the SIS has been ex-
plored by several investigators. Beck,
Schuyler, and Herman (1974) reported
that the mean total score of Section 1
(items 1 through 8) was significantly
higher for 31 completed suicides com-
pared with 49 nonfatal attempts. The
same results were found in a larger study
(Beck, Morris, & Beck, 1974) comparing
194 completed suicides to 231 attempted
suicides. The latter study also showed
that the 19 patients who re-attempted sui-
cide within 1 year after discharge had sig-
ificantly higher 15-item total scores for
the first attempt than those who did not
re-attempt suicide.

Several factor analytic studies on the
SIS have been reported. In all of these
studies, standard factor analytic proce-
dures were used: The number of factors
was selected based on the number with ei-
genvalues greater than unity, extraction
was by the method of principal compo-
nents, and varimax rotation was em-
ployed. These studies analyzed the items
of the SIS as though they were continuous
variables, although they are rated on a
polytomous scale of 0, 1, and 2.

In their initial factor analysis of the
SIS, Beck and Lester (1976) performed a
factor analysis on the first section of the
SIS (items 1 through 8) using a sample of
208 suicide attempters. They repeated
the analysis using a sample of 235 completed
suicides. A three-factor solution was
found in each analysis, with the two solu-
tions differing only with regard to items 4
and 6.

Beck, Weissman, Lester, and Trexler
(1976) also performed a factor analysis on
an 18-item version of the SIS. They in-
cluded the 15 items of sections 1 and 2 as
well as three additional items that are not
typically included in calculating the total
score of the SIS. When the analysis was
performed on 188 suicide attempters, six
factors were extracted. The 15 items on
the scale loaded on four of the factors: Fac-
tor 1 was identified as Attitudes toward
the Attempt, Factor 2 reflected Planning
Behavior, Factor 3, Precautions against
Intervention, and Factor 6, Communication
with Others. Factors 4 and 5 con-
tained the three additional items.

Wetzel (1977) conducted a factor analy-
sis on the 15-item SIS ratings of 48 suicide
attempters. Using standard factor ana-
lytic procedures, four factors had eigen-
values greater than 1.0 and were thereby
extracted. These four factors were defined
as Serious Intent, Lethal Act, Precautions
against Interference, and Notification.

Although there is no consensus across
these previous studies as to exactly how
many components, or factors, are suffi-
cient to explain the variance of the 15-item
scale, all of these factor analytic results
suggest that there is more than one com-
ponent of suicide intent. No prior factor
analytic study of the SIS has taken into
account the polychotomous nature of the
item scores. This paper reports on an ex-
ploratory factor analysis of the SIS utiliz-
ing a method for polychotomous data. The
factor analysis was performed on the ma-
trix of polychoric correlation coefficients,
the correlations between the continuous
variables underlying the categorical rat-
ings. The method of unweighted least
squares was used for extraction, and an
oblique rotation was used because there
was reason to believe that components of
the SIS would be intercorrelated. Analys-
sis of the scale's internal reliability was
also performed, and preliminary assess-
ment of the validity of the factor sub-
 scores was conducted.

METHODS

Subjects

The sample consisted of 98 consecutively
admitted psychiatric inpatients with a
history of suicide attempt(s) with con-
sequences that warranted medical evalua-
tion. All subjects were inpatients admitted to the Payne Whitney Clinic (New York City) or the Western Psychiatric Institute and Clinic (Pittsburgh) by the same group of investigators. Patients had been admitted to the hospital for assessment and treatment of depression and/or suicide attempt. Patients initially considered to have an affective disorder were admitted to the study after giving written informed consent. Patients were assessed within two weeks of admission, and on average, 26.7 ± 99.7 weeks after their most recent attempt. DSM-III-R diagnoses were made by a structured clinical interview using an expanded version of the Schedule for Affective Disorders and Schizophrenia (SADS; Spitzer, Endicott, & Robins, 1978). The sample consisted predominantly (93%) of patients with depressed mood, having diagnoses of major depression, dysthymia, or adjustment disorder. The mean age was 28 ± 10 years, 62.2% were females, and 78.6% were white. As to marital status, 41.8% were single, 27.6% were married, and 30.5% were separated, divorced, and widowed. The total scores of the SIS from the two samples did not differ (16.2 ± 6.1 versus 16.0 ± 5.6, t = 0.17, p = n.s.) and the data sets from the two sites were therefore pooled. The intra-class correlation coefficient of the SIS total scores for the raters was 0.72 (n = 16 patients).

Analyses

Exploratory factor analysis was performed utilizing a method for polychotomous data. Polychoric correlation coefficients were estimated by maximum likelihood estimation utilizing Muthen's LISCOMP program (Muthen, 1987). These were computed by submitting each of the 105 distinct 3 × 3 contingency tables to the program to obtain the estimated polychoric correlation coefficients (Table 1). A polychoric correlation coefficient is defined as the product moment correlation between the two normally distributed latent variables that are assumed to underlie the polychotomous variables (Kotz, Johnson, & Read, 1986). The resulting matrix of polychoric correlation coefficients was then factor analyzed with the Statistical Package for the Social Sciences (SPSS) using the method of unweighted least squares (ULS) for estimation of the factor loadings. The oblimin algorithm was utilized for oblique rotation of the factors to simple structure, and factor loadings reported are from the factor pattern matrix.

Factor subscale scores, based on the results of the polychoric factor analysis, were computed by summing the items that loaded on each of the factors. Subscale scores were used, as opposed to factor scores, because factor scores are likely to be unstable unless a large sample is used. Cronbach's alpha was used to measure the internal reliability of the total scale and each of the subscales.

In an initial effort to assess the validity of the factors, correlation analyses were carried out to test the association of the factor subscales to other variables of interest, including the Lethality Scale score (Beck et al., 1975), the Hopelessness Scale (Beck, Weissman, Lester, & Trexler, 1974), and the Scale for Suicidal Ideation (Beck, Kovacs, & Weissman, 1979). In addition, to assess the relationships between suicide intent and clinical symptom severity, correlation analyses were performed with the 24-item total score of the Hamilton Depression Rating Scale (HDRS; Hamilton, 1960) and the scores on the Global Assessment Scale (GAS; Endicott, Spitzer, & Fleiss, 1976). Individual scales were not available for some cases; therefore the sample size varies for these analyses.

RESULTS

A two-factor solution was obtained from the SPSS factor analysis procedure using the method described above. Although four of the eigenvalues were greater than unity, a four-factor solution showed evidence of over-factorization. The solution
TABLE 1
Matrix of Polychoric Correlation Coefficients

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.717</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.450</td>
<td>.472</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.999</td>
<td>.256</td>
<td>.390</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.189</td>
<td>.139</td>
<td>.412</td>
<td>.432</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.018</td>
<td>.377</td>
<td>.543</td>
<td>.199</td>
<td>.709</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.335</td>
<td>.199</td>
<td>.047</td>
<td>.138</td>
<td>.716</td>
<td>.422</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.007</td>
<td>.145</td>
<td>.138</td>
<td>.374</td>
<td>.300</td>
<td>.166</td>
<td>.563</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.213</td>
<td>.294</td>
<td>.157</td>
<td>.355</td>
<td>.018</td>
<td>.191</td>
<td>.171</td>
<td>.223</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.019</td>
<td>.227</td>
<td>.341</td>
<td>.272</td>
<td>.011</td>
<td>.274</td>
<td>.072</td>
<td>.226</td>
<td>.531</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>.054</td>
<td>.341</td>
<td>.335</td>
<td>.342</td>
<td>.226</td>
<td>.420</td>
<td>.115</td>
<td>.190</td>
<td>.490</td>
<td>.937</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.079</td>
<td>.362</td>
<td>.387</td>
<td>.428</td>
<td>.005</td>
<td>.269</td>
<td>.022</td>
<td>.270</td>
<td>.568</td>
<td>.870</td>
<td>.837</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>.116</td>
<td>.293</td>
<td>.255</td>
<td>.401</td>
<td>.008</td>
<td>.230</td>
<td>.010</td>
<td>.206</td>
<td>.500</td>
<td>.866</td>
<td>.802</td>
<td>.943</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>.419</td>
<td>.464</td>
<td>.389</td>
<td>.309</td>
<td>.401</td>
<td>.658</td>
<td>.372</td>
<td>.038</td>
<td>.306</td>
<td>.386</td>
<td>.284</td>
<td>.418</td>
<td>.373</td>
<td>.118</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note. Underlined values represent negative coefficients.

resulted in the third and fourth factors having only two loadings greater than 0.50. In order to identify a factor from a sample correlation matrix, at least three significant loadings are required (Zwick & Velicer, 1986). A three-factor solution resulted in a similar over-factorization; the third factor had only two significant loadings. The two-factor solution was then obtained and resulted in each factor having a sufficient number of significant loadings (Table 2).

Factor 1 consists of items dealing with the largely subjective intent to make a lethal attempt. This factor contains high loadings on expectation regarding fatality (.97), seriousness of attempt (.93), ambivalence to living (.93), concept of lethality (.87), concept of reversibility (.79), and purpose of attempt (.50). Factor 2 consists of items dealing largely with objective aspects of planning. This factor contains high loadings on active preparation for attempt (.76), isolation (.76), final acts in anticipation of death (.73), degree of premeditation (.63), precautions against discovery (.56), presence of a suicide note (.56), acting to get help during or after the attempt (.55), and timing (.52). All of the above items had a factor loading of .50 or higher on one of the factors. Factors 1 and 2 were weakly correlated, \(r(96) = .031, p = .002 \).

Item 8, referring to overt communication of intent before the attempt, had low loadings on both Factor 1 (.30) and Factor 2 (-.14). Analysis of the corrected item-total correlations, defined as the correlation between each item and the sum of the remaining 14 items (Table 3), showed that Item 8 had a weak negative correlation with the remainder of the scale, \(r(96) = -.10, p = .35 \). This item did not load highly on either the Lethal Intent factor or the Planning factor, and was therefore not included in either subscale.

Reliability of Subscales

Lethal Intent and Planning subscale scores were calculated for each patient by summing the items that loaded on each of the two factors of the factor analysis solution. Reliability of the SIS was calculated using Cronbach’s alpha, a measure of internal consistency. The reliability of the 15-item scale was \(\alpha = .81 \). The reliability of the Lethal Intent subscale was \(\alpha = .90 \) and of the Planning subscale was \(\alpha = .74 \). Corrected item-total and item-subscale total correlations were calculated as the cor-
relation of each item with the total of the remaining items (see Table 3).

Validity of Subscales

A preliminary assessment was made of the validity of the Lethal Intent and Planning subscale scores. Ratings of the lethality of the index attempt, that is, medical damage resulting from the attempt, were significantly correlated with both the Lethal Intent subscale, \(r(95) = .24, p = .02 \), and the Planning subscale, \(r(95) = .33, p = .001 \). However, when regression analysis was performed with medical damage

<table>
<thead>
<tr>
<th>Item Description (Item Number)</th>
<th>Communality</th>
<th>Eigenvalue</th>
<th>Lethal Intent</th>
<th>Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation (1)</td>
<td>.562</td>
<td>5.932</td>
<td>-.082</td>
<td>.763</td>
</tr>
<tr>
<td>Timing (2)</td>
<td>.353</td>
<td>2.390</td>
<td>.188</td>
<td>.524</td>
</tr>
<tr>
<td>Precautions (3)</td>
<td>.377</td>
<td>1.715</td>
<td>.154</td>
<td>.562</td>
</tr>
<tr>
<td>Act to Gain Help (4)</td>
<td>.415</td>
<td>1.431</td>
<td>.240</td>
<td>.547</td>
</tr>
<tr>
<td>Final Acts (5)</td>
<td>.509</td>
<td>0.961</td>
<td>-.175</td>
<td>.731</td>
</tr>
<tr>
<td>Degree of Planning (6)</td>
<td>.589</td>
<td>0.685</td>
<td>.051</td>
<td>.755</td>
</tr>
<tr>
<td>Note (7)</td>
<td>.294</td>
<td>0.632</td>
<td>-.141</td>
<td>.556</td>
</tr>
<tr>
<td>Communication (8)</td>
<td>.088</td>
<td>0.535</td>
<td>.296</td>
<td>-.136</td>
</tr>
<tr>
<td>Purpose of Attempt (9)</td>
<td>.315</td>
<td>0.334</td>
<td>.497</td>
<td>.173</td>
</tr>
<tr>
<td>Expectation Regarding Fatality (10)</td>
<td>.945</td>
<td>0.210</td>
<td>.966</td>
<td>.027</td>
</tr>
<tr>
<td>Concept of Lethality (11)</td>
<td>.841</td>
<td>0.161</td>
<td>.869</td>
<td>.158</td>
</tr>
<tr>
<td>Seriousness (12)</td>
<td>.905</td>
<td>1.000</td>
<td>.926</td>
<td>.094</td>
</tr>
<tr>
<td>Ambivalence to Living (13)</td>
<td>.878</td>
<td>0.013</td>
<td>.926</td>
<td>.047</td>
</tr>
<tr>
<td>Concept of Reversibility (14)</td>
<td>.624</td>
<td>-.037</td>
<td>.786</td>
<td>.018</td>
</tr>
<tr>
<td>Degree of Premeditation (15)</td>
<td>.473</td>
<td>-.032</td>
<td>.169</td>
<td>.631</td>
</tr>
</tbody>
</table>

Note. \(r_{1-T} \) = item-total correlation; \(r_{1-LI} \) = item-lethal intent correlation; \(r_{1-PL} \) = item-planning correlation.

<table>
<thead>
<tr>
<th>Item Description (Item Number)</th>
<th>(r_{1-T})</th>
<th>(r_{1-LI})</th>
<th>(r_{1-PL})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation (1)</td>
<td>.30</td>
<td>-</td>
<td>.42</td>
</tr>
<tr>
<td>Timing (2)</td>
<td>.43</td>
<td>-</td>
<td>.46</td>
</tr>
<tr>
<td>Precautions (3)</td>
<td>.44</td>
<td>-</td>
<td>.45</td>
</tr>
<tr>
<td>Act to Gain Help (4)</td>
<td>.33</td>
<td>-</td>
<td>.28</td>
</tr>
<tr>
<td>Final Acts (5)</td>
<td>.36</td>
<td>-</td>
<td>.49</td>
</tr>
<tr>
<td>Degree of Planning (6)</td>
<td>.52</td>
<td>-</td>
<td>.59</td>
</tr>
<tr>
<td>Note (7)</td>
<td>.24</td>
<td>-</td>
<td>.35</td>
</tr>
<tr>
<td>Communication (8)</td>
<td>-.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Purpose of Attempt (9)</td>
<td>.38</td>
<td>.42</td>
<td>-</td>
</tr>
<tr>
<td>Expectation Regarding Fatality (10)</td>
<td>.58</td>
<td>.85</td>
<td>-</td>
</tr>
<tr>
<td>Concept of Lethality (11)</td>
<td>.64</td>
<td>.81</td>
<td>-</td>
</tr>
<tr>
<td>Seriousness (12)</td>
<td>.60</td>
<td>.80</td>
<td>-</td>
</tr>
<tr>
<td>Ambivalence to Living (13)</td>
<td>.57</td>
<td>.79</td>
<td>-</td>
</tr>
<tr>
<td>Concept of Reversibility (14)</td>
<td>.48</td>
<td>.67</td>
<td>-</td>
</tr>
<tr>
<td>Degree of Premeditation (15)</td>
<td>.51</td>
<td>-</td>
<td>.53</td>
</tr>
</tbody>
</table>
as the dependent variable and Lethal Intent and Planning as the independent variables, only the Planning factor was a significant predictor of medical damage \((t = 2.76, p = .007) \). Both subscales were correlated with suicidal ideation as measured by the Scale for Suicidal Ideation [Lethal Intent: \(r(72) = .51, p < .0001 \]; Planning: \(r(72) = .31, p = .01 \)]. However, neither the Lethal Intent subscale, \(r(95) = -.01, p = .92 \), nor the Planning subscale, \(r(95) = -.04, p = .70 \), were correlated with the total number of lifetime suicide attempts. There were no significant gender differences in Lethal Intent (males: 9.3 ± 3.2, females: 8.0 ± 3.6, \(t = 1.78, df = 96, p = .08 \)) or in Planning (males: 7.5 ± 3.9, females: 7.0 ± 3.9, \(t = 0.62, df = 96, p = .54 \)).

The distributions of the two subscales appear to be different (see Figure 1). The Lethal Intent subscale appears to be negatively skewed and somewhat truncated, with most of the scores clustered at the high end of the range of scores and few at the low end. The Planning subscale appears to be more normally distributed. The correlation of the subscales with the other variables of interest did not show different results when Spearman rank correlations were performed as compared to the Pearson correlations reported in this paper.

Relationship to Clinical Variables

Lethal Intent had a significant positive correlation with the total score on the Hopelessness Scale, \(r(77) = .27, p = .02 \). Planning, however, was not correlated with hopelessness, \(r(77) = -.06, p = .59 \). When a statistical test for the quality of these two dependent correlation coefficients (Steiger, 1980) was calculated, the two coefficients were found to be significantly different \((T_2 = 2.61, df = 76, p < .05) \). Lethal Intent appeared to be weakly correlated with global functioning as assessed using the GAS, although this correlation did not reach significance, \(r(96) = -.19, p = .06 \). Planning was not related to GAS scores, \(r(96) = -.09, p = .40 \). These two correlation coefficients were not significantly different \((T_2 = -.91, df = 95, n.s.) \). Neither Lethal Intent, \(r(96) = -.01, p = .91 \), nor Planning, \(r(96) = 0.06, p = .57 \), was significantly correlated with ratings of severity of depression using the HDRS.

DISCUSSION

Suicide is a complex behavioral phenomenon that is influenced by a wide range of social and biological factors. There are also several clinically distinct aspects of suicide attempts, such as medical lethality, impulsivity, and intent to die. To date, little empirical work has been undertaken to differentiate and measure distinct aspects of suicide attempts. As a result, it remains difficult to determine whether different risk factors for suicide are associated with distinct types of suicidal behavior. The development and validation of measures that assess clinically relevant dimensions of suicidal behavior are needed to differentiate causes or correlates of different types or aspects of suicide behavior.

Several studies have attempted to differentiate distinct aspects of suicide attempts by factor analyzing the SIS. These factor analytic studies have yielded up to four-factor solutions. The presence of factors with less than three significant loadings in these previous studies may indicate over-factorization. Additionally, factor analysis, when performed on the product-moment correlation matrix of discrete items often results in solutions that include more factors than are effectively needed to explain the relationships among the items (McDonald, 1985). In the present factor analysis of the SIS, using a factor analytic method which is more appropriate for polychotomous rating scale data, two clinically relevant dimensions of suicidal behavior were differentiated: the (subjective) Lethality of Intent and the (objective) degree of Planning as-
Factor I: Lethal Intent

![Graph of Lethal Intent scores]

Factor II: Planning

![Graph of Planning scores]

Figure 1. Distribution of the factor subscale scores of the Suicide Intent Scale.

associated with attempts. Factor 1, the Lethal Intent factor, included items 9, 10, 11, 12, 13, and 14, and Factor 2, the Planning factor, included items 1, 2, 3, 4, 5, 6, 7, and 15.

The present study, as well as that of Beck and his colleagues (1976), noted that Item 8 (Communication) was not related to the other items. Beck’s study suggested that communication of intent was not a general dimension underlying suicide intent but rather was a behavioral pattern, reflecting personal style more than intent. Consistent with Beck’s finding, the results of our polychotomous factor analysis showed that this item had very low loadings on both factors. Therefore, it was not considered a dimension that could be used to explain the variance of the two extracted factors of suicide intent.

The intent to make a lethal suicide attempt appears to be distinct in some ways from the planning of the attempt. Although the two components were significantly correlated, the correlation was relatively low, $r(96) = 0.31$, $p = .002$. This separation has clinical face validity because, for example, a person may extensively plan an attempt but not believe the means chosen to be lethal, whereas another person may plan very little, but impulsively use a very lethal method. The distribution of the factor subscale scores suggests that in suicide attempters mak-
ing serious attempts, the scores of Lethal Intent are often at the highest end of the scale. The scores for Planning appear to be more normally distributed, with some low and high scores, with most scores lying in the middle of the range. Scores on these specific components of intent may therefore be more informative than a total score of the scale.

The preliminary evaluation of the validity of the Lethal Intent subscale and the Planning subscale indicated that they were differentially related to variables of interest. Lethal Intent was correlated with ratings of hopelessness whereas Planning was not. This raised the possibility that while hopelessness may influence the lethal intent of an individual, other factors may more powerfully influence the extent of planning for the attempt. Both Lethal Intent and Planning subscales were correlated with objective ratings of the medical damage or lethality of the attempt. These correlations were low, which raises the question as to what variables, other than suicide intent, determine the actual medical damage resulting from the attempt. No clear relationship was found between severity of depression or global functional impairment (GAS) and either suicide intent subscore. These results are consistent with those reported by Beck and his colleagues who found that suicide attempters and nonattempters suffering from a major depressive disorder could not be distinguished on the basis of severity of depression (Beck, Steer, Kovacs, & Garrison, 1985). Similarly, severity of depression during an index hospitalization does not appear to predict future suicide (Fawcett, Schefte, Clark, Hedeker, Gibli, & Coryell, 1987).

Although factor analysis using the matrix of polychoric correlation coefficients is the more appropriate statistical analysis when the variables are polychotomous in nature, some limitations do exist and need to be considered in the interpretation of these results. The resulting matrix may not be positive definite, as was the case in this analysis. Further, the polychoric correlation coefficients are estimated and therefore have a standard error associated with them. The larger the sample, the more precise the estimate and the less the estimation error. The sample size used in this analysis was not large; therefore there is likely some imprecision in the estimates of the correlation coefficients. The sample is also considered small for the calculation of stable factor loadings; we therefore used subscale scores as opposed to factor scores with the assumptions that the identification of subscales, items that cluster together, would be more stable than factor scores. A future study, using a larger sample size, would help to confirm these results.

Despite the fact that there was only a weak correlation between the objective suicide Planning factor and medical damage in this sample of suicide attempters, suicide completers have been found to have a higher score on the objective planning section of the SIS than suicide attempters (Beck, Schuyer, & Herman, 1974). Given that Beck, Schuyer, and Herman (1974) reported that higher SIS scores predicted future suicide attempts, and that higher objective intent scores based on the first part of the SIS distinguished suicide completers from attempters, it would be of interest to conduct a prospective study of the predictive properties of these two SIS subscales. Furthermore, given the finding of altered serotonin function in completers and attempters undertaking the more serious forms of suicidal behavior (Mann, Arango, Marcuk, Theccanat, & Reis, 1989), future studies might address the relationship of these biological changes to lethal intent and planning.

The Lethal Intent and Planning subscales identified by this study may be useful assessment tools for defining distinct components of intent. Knowledge of the extent of lethal intent in a previous suicide attempt and whether that attempt involved a high or low level of planning behavior may provide valuable information for research purposes and may eventually aid in making treatment decisions for individuals who may be at risk for future suicide attempts.
REFERENCES

